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Abstract
In a recent paper, Cariñena J F, Perelomov A M, Rañada M F and Santander
M (2008 J. Phys. A: Math. Gen. 41 085301) analyzed a non-polynomial
one-dimensional quantum potential representing an oscillator which they
argued was intermediate between the harmonic and isotonic oscillators. In
particular they proved that it is Schrödinger soluble, and explicitly obtained
the wavefunctions and energies of the bound states. In this paper we show that
these results can be obtained much more simply by noting that this potential
is a supersymmetric partner potential of the harmonic oscillator. We then use
this observation to generate an infinite set of potentials which can exactly be
solved in a similar manner.

PACS numbers: 03.65.−w, 03.65.Ge, 02.30.Gp

1. Introduction

In a recent paper in this journal, Cariñena, Perelomov, Rañada and Santander [1], which we
refer to from now on as CPRS, investigated the solutions to the eigenvalue problem for the
Schrödinger equation1

−d2ψ

dx2
+

[
x2 + 8

2x2 − 1

(2x2 + 1)2

]
ψ = Eψ.

Using some rather involved mathematics they were able to show that the eigenfunctions are
given by

ψn(x) = Pn(x)

(2x2 + 1)
e−x2/2, where n = 0, 3, 4, 5 . . . ,

1 Note that we define our Hamiltonian to be twice that used by CPRS, so that our energy values are twice theirs.
We use this definition so that the coefficient of the second derivative in Schrödinger’s equation is − 1, which is the
standard choice in the factorization and supersymmetry literature.
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and the polynomial factors Pn(x) are related to the Hermite polynomials by

Pn(x) =
{

1 n = 0
Hn(x) + 4nHn−2(x) + 4n(n − 3)Hn−4(x) n = 3, 4, 5 . . .

The corresponding eigenvalues are given by

En = −3 + 2n where n = 0, 3, 4, 5 . . .

In this paper we show that the CPRS potential is a supersymmetric partner potential of the
harmonic oscillator. This allows us to rederive all the above results in a much simpler fashion.
In addition, by considering the question of which other potentials are supersymmetric partners
of the harmonic oscillator, we construct an infinite set of exactly soluble potentials, along with
their eigenfunctions and eigenvalues.

The rest of the paper is organized as follows. In section 2 we give a brief summary of the
ideas of the factorization approach to the Schrödinger equation and supersymmetric partner
potentials. In section 3 we prove that the CPRS potential is a partner potential of the harmonic
oscillator, and use this to rederive the formulae for its eigenfunctions and eigenvalues. In
section 4 we show how to find other partner potentials of the harmonic oscillator, and derive an
infinite set of exactly soluble potentials. In section 5 we systematically derive the eigenvalues
and eigenfunctions of these new generalized CPRS potentials, whilst in section 6 we make
our summary and conclusions.

2. The factorization approach

In this section we provide a self-contained introduction to the factorization approach, and the
idea of supersymmetric partner potentials. More details of the general theory can be found in
[2] and [3]. A discussion of the supersymmetric connection between harmonic and isotonic
oscillators can be found in [4].

We start with the one-dimensional single-particle Schrödinger equation,

H1ψ(x) =
[
− d2

dx2
+ V1(x)

]
ψ(x) = Eψ(x).

The idea is to factorize the Hamiltonian operator, H1, which is a second-order differential
operator, into a product of two first-order differential operators,

H1 = A†A,

where

A = d

dx
+ W(x), A† = − d

dx
+ W(x).

Upon direct substitution we see that

V1(x) = W 2(x) − W ′(x).

We now define the operator H2 = AA† by reversing the order of A and A†. Simple algebra
shows that H2 is a Hamiltonian corresponding to a new potential V2(x),

H2 = AA† = − d2

dx2
+ V2(x), V2(x) = W(x)2 + W ′(x).

The potentials V1(x) and V2(x) are known as supersymmetric partner potentials.
The key result we will be using in later sections is that the eigenvalues and eigenfunctions

of H1 and H2 are related. Suppose that ψ(1)
n is an eigenfunction of H1 with energy eigenvalue

E(1)
n . Then Aψ(1)

n is an eigenfunction of H2 with energy eigenvalue E(1)
n since

H2
[
Aψ(1)

n

] = AA†Aψ(1)
n = A

[
H1ψ

(1)
n

] = A
[
E(1)

n ψ(1)
n

] = E(1)
n

[
Aψ(1)

n

]
.

2
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The only way that Aψ(1)
n could fail to be an eigenfunction of H2 is if it equals zero, in which

case W(x) = − d
dx

ln ψ(1)
n (x), which could be true for at most one value of n. Similarly suppose

that ψ(2)
n is an eigenfunction of H2 with eigenvalue E(2)

n . Then A†ψ(2)
n is an eigenfunction of

H1 with energy eigenvalue E(2)
n since

H1
[
A†ψ(2)

n

] = A†AA†ψ(2)
n = A† [

H2ψ
(2)
n

] = A† [
E(2)

n ψ(2)
n

] = E(2)
n

[
A†ψ(2)

n

]
.

The only way that A†ψ(2)
n could fail to be an eigenfunction of H1 is if it equals zero, in which

case W(x) = d
dx

ln ψ(2)
n (x), which again could be true for at most one value of n.

It follows that, with the possible exception of one level, H1 and H2 have the same energy
spectra. The eigenfunctions of H2 can be found from those of H1 by applying the operator
A; the eigenfunctions of H1 can be obtained from those of H2 by applying the operator A†.
If H1 has one more energy level than H2, this energy eigenfunction will be the solution of
Aψ

(1)
0 = 0, and have energy eigenvalue zero; if H2 has one more energy level than H1, this

energy eigenfunction will be a solution of A†ψ(2)
0 = 0, and have energy eigenvalue zero. The

upshot of all this is that, if we know how to exactly solve one of H1 or H2, we can immediately
derive the exact solution of the other.

Finally we note that we can easily normalize the newly obtained eigenfunctions. If
ψ(1)

n is a normalized eigenfunction of H1 with energy E(1)
n , the corresponding normalized

eigenfunction of H2 is

ψ(2)
n = CnAψ(1)

n ,

where Cn is a constant to be determined. If we take the scalar product of this eigenfunction
with itself we obtain

1 = (
ψ(2)

n , ψ(2)
n

) = |Cn|2
(
ψ(1)

n , A†Aψ(1)
n

) = |Cn|2E(1)
n .

This leads to the result

ψ(2)
n = [

E(1)
n

]−1/2
Aψ(1)

n = [
E(1)

n

]−1/2
[

d

dx
+ W(x)

]
ψ(1)

n ,

and we similarly find that

ψ(1)
n = [

E(2)
n

]−1/2
A†ψ(2)

n = [
E(2)

n

]−1/2
[
− d

dx
+ W(x)

]
ψ(2)

n .

3. Solution of the CPRS potential

We can solve the CPRS potential by noticing that it is a partner potential of the harmonic
oscillator. To see this we simply take

W(x) = x +
4x

(2x2 + 1)
,

from which trivial calculus gives us

V1(x) = W(x)2 − W ′(x) = x2 + 8
(2x2 − 1)

(2x + 1)2
+ 3

V2(x) = W(x)2 + W ′(x) = x2 + 5.

If follows that

H1 = A†A = HC + 3 → E
(1)
k = EC

k + 3

H2 = AA† = HH + 5 → E
(2)
k = EH

k + 5,

3
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where

HC = − d2

dx2
+ x2 + 8

(2x2 − 1)

(2x2 + 1)2

is the CPRS Hamiltonian, and

HH = − d2

dx2
+ x2

is the harmonic oscillator Hamiltonian.
Now the eigenvalues and unnormalized eigenfunctions of the harmonic oscillator [5] are

given by

EH
k = 2k + 1 and φH

k (x) = Hk(x)e−x2/2,

where k = 0, 1, 2 . . . and the Hermite polynomials Hk(x) are given by the Rodrigues formula

Hk(x) = (−1)kex2 dk

dxk

[
e−x2]

.

It follows trivially that the eigenvalues and unnormalized eigenfunctions of H2 are

E
(2)
k = 2k + 6 and ψ

(2)
k (x) = Hk(x)e−x2/2.

The corresponding eigenvalues of H1 are therefore E
(1)
k = 2k + 6, with unnormalized

eigenfunctions

ψ
(1)
k (x) = A†ψ(2)

k (x) =
[
− d

dx
+ x +

4x

(2x + 1)

]
Hk(x)e−x2/2.

We can simplify this expression by repeatedly using the Hermite polynomial identities

H ′
k(x) = 2kHk−1(x)

2xHk(x) = Hk+1(x) + 2kHk−1(x),

which can be derived directly from the Rodrigues formula, to obtain

ψ
(1)
k (x) = 1

2
[Hk+3(x) + 4(k + 3)Hk+1(x) + 4k(k + 3)Hk−1(x)]

e−x2/2

(2x2 + 1)
.

The normalization factor for the harmonic oscillator eigenfunctions is

N
(2)
k =

[
1

2kk!
√

π

]1/2

,

so the corresponding factor for the CPRS eigenfunctions is

N
(1)
k =

[
E

(2)
k

]−1/2
N

(2)
k =

[
1

2k+1k!(k + 3)
√

π

]1/2

.

We have therefore exactly solved the CPRS Hamiltonian, and the eigenvalues and normalized
eigenfunctions are given by

EC
k = 2k + 3

φC
k (x) =

[
(k + 1)(k + 2)

2k+3(k + 3)!
√

π

]1/2 [Hk+3(x) + 4(k + 3)Hk+1(x) + 4k(k + 3)Hk−1(x)]

(2x2 + 1)
e−x2/2

where k = 0, 1, 2 . . . To compare with the CPRS results we set n = k + 3 so that

EC
n = 2n − 3

φC
n (x) =

[
(n − 1)(n − 2)

2nn!
√

π

]1/2 [Hn(x) + 4nHn−2(x) + 4n(n − 3)Hn−4(x)]

(2x2 + 1)
e−x2/2,

4
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where n = 3, 4, 5 . . . Note that there is one final state possible, which is the solution of
Aφ0 = 0, and this will have energy −3 if it exists. Solving this equation gives

ψC
0 (x) = C

e−x2/2

(2x2 + 1)
,

which is of exactly the same form as the previous φC
n (x) with n = 0. Even the form of the

normalization constant suggested by placing n = 0 in the previous equation turns out to be
correct, as we show in appendix A. It follows that the final solution of the CPRS Hamiltonian
is

EC
n = 2n − 3

φC
n (x) =

[
(n − 1)(n − 2)

2nn!
√

π

]1/2 [Hn(x) + 4nHn−2(x) + 4n(n − 3)Hn−4(x)]

(2x2 + 1)
e−x2/2,

where n = 0, 3, 4, 5 . . .

We have therefore reproduced the results of CPRS in a very direct and systematic manner
by using the fact that the CPRS potential is a partner potential of the harmonic oscillator
potential.

4. Partner potentials of the harmonic oscillator

The solution of the CPRS Hamiltonian in section 3 was motivated by the observation that it is
a partner of the harmonic oscillator. Let us now turn this around, and ask which Hamiltonians,
H1, are partners to the harmonic oscillator, V2(x) = x2, and can thus be solved by the method
of section 3. The W(x) needed in the factorization method would then have to satisfy

dW

dx
+ W(x)2 = V2(x) − λ,

where we have included an irrelevant constant λ. This is an example of a Riccati differential
equation [6], first analyzed in 1724. The method of solution is to substitute

W(x) = d

dx
ln φ(x) = 1

φ(x)

dφ

dx
,

which leads to the equation

−d2φ

dx2
+ V2(x)φ(x) = λφ(x).

We see that φ(x) is a solution of the original Schrödinger equation, in our case the harmonic
oscillator. We seem to have gone round in a complete circle, which is not surprising since
the central idea of the partner potential method is a mapping between second-order linear and
first-order nonlinear differential equations.

We also seem to run into a problem in that every solution φk(x) of the original Schrödinger
equation, other than the ground state, will have at least one zero x0. The W(x) generated
from this will then have a (x − x0)

−1 singularity, and then V1(x) will have a (x − x0)
−2

singularity. This approach would therefore seem to only generate soluble potentials which
have a singularity at finite x, which might be considered an unphysical feature.

This problem can be overcome in the special case of the harmonic oscillator, for which
the Schrödinger equation is

−d2φ

dx2
+ x2φ = λφ.

5
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If we set x = iy, this becomes

−d2φ

dy2
+ y2φ = −λφ,

which is the original equation with the irrelevant change in constant λ → −λ. In other words,
if we set x → ix in the harmonic oscillator eigenfunctions, we get perfectly good φ(x) which
can then generate W(x) and finally H1 and H2. These φ(x) would not be good eigenfunctions
as they are not normalizable—they behave like ex2/2 at large x—but this is not relevant here.
The solutions φ(x) are thus

φp(x) = Hp(x)ex2/2,

where the pseudo-Hermite polynomials are given by

Hp(x) = (−i)pHp(ix) = e−x2 dp

dxp

[
ex2]

.

They are basically the Hermite polynomials, where the signs of all coefficients are made
positive. The even solutions φ2m(x) have no real zeros; the odd solutions φ2m+1(x) have their
only real zero at x = 0 since they are odd. This leads to a 1/x2 singularity at x = 0, which
can be regarded as a centrifugal barrier2, as in the case of the isotonic oscillator.

Let us examine the first few partner potentials generated in this manner. For k = 0,

φ0(x) = ex2/2

W(x) = d

dx
ln φ0(x) = x

V1(x) = x2 − 1

V2(x) = x2 + 1,

and this generates the standard ladder operator solution of the harmonic oscillator, since this
shows that the harmonic oscillator is a partner to itself shifted by two units of energy. For
k = 1,

φ1(x) = xex2/2

W(x) = d

dx
ln φ1(x) = x +

1

x

V1(x) = x2 +
2

x2
+ 1

V2(x) = x2 + 3,

and the partner potential is an example of the isotonic oscillator. The eigenfunctions of the
isotonic oscillator generated by this method,

ψ(1)
m (x) =

[
− d

dx
+ x +

1

x

]
Hm(x)e−x2/2,

are only non-singular for odd m, and hence the energy spectrum is Ek = 2k + 2 where
k = 1, 3, 5 . . . , so that the level spacing is double that of the harmonic oscillator.

For k = 2,

φ2(x) = (4x2 + 2)ex2/2

W(x) = d

dx
ln φ2(x) = x +

4x

(2x2 + 1)

2 Of course, the term ‘centrifugal barrier’ does not make physical sense in one dimension. However, such �(�+1)/x2

singularities are often the result of separating a spherically symmetric three-dimensional problem to yield a radial
equation. Hence the term ‘centrifugal barrier’ is often used for such singular terms in a potential.

6
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V1(x) = x2 + 8
(2x2 − 1)

(2x2 + 1)2
+ 3

V2(x) = x2 + 5,

and this is the CPRS potential we have just solved. This is the first new soluble potential
generated by this method, since the solutions of the harmonic and isotonic oscillator are well
known.

For k = 3,

φ3(x) = (8x3 + 12x)ex2/2

W(x) = d

dx
ln φ3(x) = x +

1

x
+

4x

(2x2 + 3)

V1(x) = x2 +
2

x2
+ 8

(2x2 − 3)

(2x2 + 3)2
+ 5

V2(x) = x2 + 7,

which is a variant of the CPRS potential which includes a centrifugal barrier term.
For k = 4,

φ4(x) = (16x4 + 48x2 + 12)ex2/2

W(x) = d

dx
ln φ4(x) = x +

(16x3 + 24x)

(4x4 + 12x2 + 3)

V1(x) = x2 + 16
(8x6 + 12x4 + 18x2 − 9)

(4x4 + 12x2 + 3)2
+ 7

V2(x) = x2 + 9,

which is the harmonic potential plus a rational potential which is regular at the origin, and
falls off at infinity.

The common feature of these potentials is that they consist of a harmonic term plus an
additional rational function which falls off at infinity like a constant times 1/x2. For even p
this additional term is symmetric and finite at the origin, and leads to a potential which looks
like a harmonic well with an attractive dimple. For odd p the additional term is similar to
that for even p − 1, plus a centrifugal barrier term. The latter means that we consider these
potentials in the interval (0,∞), as in the case of the isotonic oscillator.

5. Exact solution of generalized CPRS potentials

In this section we will write the exact closed form solutions of the generalized CPRS potentials,
V

p

C (x), which we define to be the partner potentials of the harmonic oscillator generated by
the functions φp(x) introduced in the last section. The original CPRS potential corresponds
to the case p = 2.

We first deduce an expression for V
p

C (x). Since

W(x) = d

dx
ln φp(x) = φ′

p(x)

φp(x)
= x +

H′
p(x)

Hp(x)

W ′(x) = φ′′
p(x)

φp(x)
−

[
φ′

p(x)

φp(x)

]2

= 1 +
H′′

p(x)

Hp(x)
−

[H′
p(x)

Hp(x)

]2

,

it follows that

V2(x) = W 2(x) + W ′(x) = φ′′
p(x)

φp(x)
= x2 + 2p + 1

7
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V1(x) = W 2(x) − W ′(x) = V2(x) − 2W ′(x) = x2 + 2
H′

p(x)2 − Hp(x)H′′
p(x)

Hp(x)2
+ 2p − 1.

We therefore deduce the formula for the generalized CPRS potential,

V
p

C (x) = x2 + 2
H′

p(x)2 − Hp(x)H′′
p(x)

Hp(x)2
.

Since Hp(x) is a polynomial of order p, we see that the second term in V
p

C (x) is a rational
function with numerator a polynomial of degree 2p − 2, and denominator a polynomial of
degree 2p. As x → ∞,

V
p

C (x) ∼ x2 +
2p

x2
.

Starting from the original harmonic oscillator eigenvalues, EH
k = 2k + 1, then E

(1)
k =

E
(2)
k = 2(k + p + 1) and EC

k = 2k + 3. The unnormalized eigenfunctions are

ψ
(1)
k (x) = A†ψ(2)(x) =

[
− d

dx
+ x +

H′
p(x)

Hp(x)

]
Hk(x)e−x2/2

=
[

2xHk(x) − H ′
k(x) +

H′
p(x)

Hp(x)
Hk(x)

]
e−x2/2

=
[
Hk+1(x) +

H′
p(x)

Hp(x)
Hk(x)

]
e−x2/2

= [
Hp(x)Hk+1(x) + H′

p(x)Hk(x)
] e−x2/2

Hp(x)

=
[

p∑
i=0

2i p!

i!(p − i)!
{k + p + 1} (k + p − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

]
e−x2/2

Hp(x)
,

where the details of the final step in the above derivation are given in appendix B. The
normalization factor is given by

N
(1)
k = [

E
(2)
k

]−1/2
N

(2)
k =

[
1

2k+1k!(k + p + 1)
√

π

]1/2

If we define n = k + p + 1 we see that the eigenfunctions are given by

φC
n (x) = Nn

Pn(x)

Hp(x)
e−x2/2, where n = p + 1, p + 2, p + 3 . . . ,

the polynomial factors Pn(x) are related to the Hermite polynomials by

Pn(x) =
p∑

i=0

p!

i!(p − i)!
n
(n − i − 1)!

(n − 2i)!
Hn−2i (x),

and the normalization constant Nn is

Nn =
[
(n − 1)(n − 2) . . . (n − p)

2n−pn!
√

π

]1/2

The corresponding eigenvalues are given by

EC
n = −2p + 1 + 2n where n = p + 1, p + 2, p + 3 . . .

8
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There is one final state possible, which is given by Aψ
(1)
0 = 0, and has energy E

(1)
0 = 0, so

that EC
0 = −2p + 1. This state is then given by

φC
0 (x) = 1

φp(x)
= N0

e−x2/2

Hp(x)
.

When p = 2m is even, the normalization constant can be deduced from appendix A to be

N0 =
[
(2m)!2m

√
π

]1/2

,

which is exactly what we would obtain if we naively set n = 0 in our equation for the
normalization constant Nn. It follows that for even p, all the previous formulae are still
correct, but now we have n = 0, p + 1, p + 2, p + 3, . . . , so that we have an equidistant level
structure but with p levels missing.

In the case where p is odd, every other level starting with the ground state will have a 1/x

singularity at x = 0, and hence will not be square normalizable, and should be eliminated.
This gives an equidistant spectrum with twice the spacing of the harmonic oscillator levels,
exactly as in the case of the isotonic oscillator. More precisely, since our Hamiltonian has
a strongly singular potential in the case where p is odd, we should consider a self-adjoint
extension problem. However, since the singularity is of the form 2/x2, the restriction of
the domain to functions vanishing at the singularity gives rise to an essentially self-adjoint
operator with only one self-adjoint extension3. This issue has been extensively discussed,
for example in the papers of Casahorrán [4] and Lathouwers [7], and in Reed and Simon’s
book [8]. The result is that we should restrict the Hamiltonian to the interval (0,∞), and the
eigenfunctions should vanish at x = 0. This is exactly the same situation that occurs in the
isotonic oscillator.

6. Summary and conclusions

We have obtained the exact solution of the CPRS quantum nonlinear oscillator in an economical
fashion using the methods of supersymmetric quantum mechanics to show that it is a partner
of the harmonic oscillator. We have then used this approach to define a countably infinite set of
generalized CPRS potentials V C

p (x), where p is a positive integer, which we then exactly solve
in a similar fashion. The case where p is even is the most interesting, since all the generated
eigenfunctions are normalizable. When p is odd, half of the generated eigenfunctions must be
removed as they are not normalizable.

The key technical observation is that the harmonic oscillator eigenvalue equation is
unchanged under the transformation x → ix, so the harmonic oscillator eigenfunctions with x
replaced by ix can be used to generate the ladder operators A and A† needed to move between
supersymmetric partners. More generally one can use any solution of a Schrödinger equation
to generate the ladder operators; it does not have to be a good eigenfunction as normalization
is not required.

We finally note that the isotonic oscillator eigenvalue equation is also unchanged under
the transformation x → ix, and this will be the subject of future investigations.

3 We would like to thank one of the referees and a board member of the journal for drawing our attention to this
point.
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Appendix A. Normalization of ground-state eigenfunctions

In this appendix we evaluate the normalization integral needed for the ground state
eigenfunctions

I2m =
∫ ∞

−∞

e−x2

H2m(x)2
dx =

√
π

22m(2m)!
. (A.1)

To evaluate this integral define Jp(x) as the indefinite integral

Jp(x) =
∫

e−x2

Hp(x)2
dx =

∫
Gp(x)2e−x2

dx,

where for simplicity we have defined Gp(x) = 1/Hp(x). We can derive identities for the
Gp(x) by taking the identities for Hp(x),

H′
p(x) = Hp+1(x) − 2xHp(x)

H′
p(x) = 2pHp−1(x),

and substituting Hp(x) = 1/Gp(x) to obtain

Gp(x)2 = 2xGp(x)Gp+1(x) − G′
p(x)Gp+1(x)

G′
p(x)Gp−1(x) = −2pGp(x)2.

We can now substitute the first identity into the formula for Jp(x) and integrate by parts to
obtain

Jp(x) =
∫ (

[2xe−x2
]Gp(x)Gp+1(x) − G′

p(x)Gp+1(x)e−x2
)

dx

= −Gp(x)Gp+1(x)e−x2
+

∫ (
[Gp(x)Gp+1(x)]′e−x2 − G′

p(x)Gp+1(x)e−x2
)

dx

= −Gp(x)Gp+1(x)e−x2
+

∫
Gp(x)G′

p+1(x)e−x2
dx

= −Gp(x)Gp+1(x)e−x2 − 2(p + 1)

∫
Gp+1(x)2e−x2

dx

= −Gp(x)Gp+1(x)e−x2 − 2(p + 1)Jp+1(x),

where in the fourth step we used the second identity with p replaced by p + 1. Repeating the
process and using the formula to evaluate the definite integral gives

Jp(x)|∞0 = [−Gp(x) + 2(p + 1)Gp+2(x)]Gp+1(x)e−x2 ∣∣∞
0 + 4(p + 1)(p + 2)Jp+2(x)

∣∣∞
0 .

Suppose now that p = 2m is even. The first term on the right-hand side clearly vanishes
as x → ∞, but as x → 0 the situation is more complicated since G2m+1(x) has an O(1/x)

singularity at x = 0. From the identities for Hp(x) we see that H2m(0) = 2(2m−1)H2m−2(0)

from which we may deduce that H2m(0) = (2m)!/m! and hence G2m(0) = m!/(2m)!. The
coefficient multiplying G2m+1(x) as x → 0 is thus

− m!

(2m)!
+ 2(2m + 1)

(m + 1)!

(2m + 2)!
= 0.
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The O(1/x) term thus has coefficient zero, and since the next term is O(x), we see that the
first term on the right-hand side also vanishes as x → 0. If we now multiply by 2 to make the
region of integration from −∞ to ∞, we obtain the result

I2m = 4(2m + 1)(2m + 2)I2m+2.

Since I0 = √
π , the result (A.1) follows.

Appendix B. Proof of two Hermite polynomial identities

In this appendix we prove two identities involving Hermite and pseudo-Hermite polynomials,
which we need to give an explicit form for eigenfunctions of generalized CPRS
potentials.

The first identity we prove is

Hp(x)Hk(x) =
p∑

i=0

2i p!

i!(p − i)!

(k + p − i)!

(k + p − 2i)!
Hk+p−2i (x), (B.1)

of which the first few examples are

1 · Hk(x) = Hk(x)

2x · Hk(x) = Hk+1(x) + 2kHk−1(x)

(4x2 + 2) · Hk(x) = Hk+2 + 4(k + 1)Hk(x) + 4k(k − 1)Hk−2(x). (B.2)

To prove this identity we will need the identities

2xHk(x) = Hk+1(x) + 2kHk−1(x)

Hp+1(x) = 2xHp(x) + 2pHp−1(x), (B.3)

which are easily derived directly from the relevant Rodrigues formulae. In fact the identity
(B.1) was originally obtained by using the first of (B.3) to derive the examples (B.2), and
thence spot the general pattern.

The proof is by induction on p. The case p = 0 is trivially true; the case p = 1 is simply
the first of (B.3). It follows that the formula is true for p = 0 and p = 1. Now assume that it
is true for all values up to p � 2. The formula for p + 1 can then be written as

Hp+1(x)Hk(x) = 2xHp(x)Hk(x) + 2pHp−1(x)Hk(x)

= Hp(x)Hk+1(x) + 2kHp(x)Hk−1(x) + 2pHp−1(x)Hk(x), (B.4)

using the identities (B.3). The three terms in (B.4) take the form

Hp(x)Hk+1(x) =
p∑

i=0

2i p!

i!(p − i)!

(k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

=
p+1∑
i=0

2i p!

i!(p + 1 − i)!
{p + 1 − i} (k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

2kHp(x)Hk−1(x) = 2k

p∑
i=0

2i p!

i!(p − i)!

(k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)

=
p∑

i=0

2i+1 p!

i!(p − i)!
{k} (k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)
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2pHp−1(x)Hk(x) = 2p

p−1∑
i=0

2i (p − 1)!

i!(p − 1 − i)!

(k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)

=
p∑

i=0

2i+1 p!

i!(p − i)!
{p − i} (k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x), (B.5)

where we were able to extend the summation limit in the first and last terms because the
additional terms are exactly zero in both cases. Combining the last two terms in (B.5) then
yields

p∑
i=0

2i+1 p!

i!(p − i)!
{k + p − i} (k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)

=
p∑

i=0

2i+1 p!

i!(p − i)!

(k + p − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)

=
p+1∑
i=1

2i p!

(i − 1)!(p + 1 − i)!

(k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

=
p+1∑
i=0

2i p!

i!(p + 1 − i)!
{i} (k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x), (B.6)

where in the second step we shifted i → i − 1, and in the third step we were again able to
extend the summation limit because the additional term was zero. Adding (B.6) to the first
term of (B.5) gives

Hp+1(x)Hk(x) =
p+1∑
i=0

2i p!

i!(p + 1 − i)!
{p + 1} (k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

=
p+1∑
i=0

2i (p + 1)!

i!(p + 1 − i)!

(k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x),

which is just (B.1) with p replaced by p + 1. This completes the proof by induction.
The second identity we prove is

Hp(x)Hk+1(x) + H′
p(x)Hk(x) =

p∑
i=0

2i p!

i!(p − i)!
{k + p + 1} (k + p − i)!

(k + p + 1 − 2i)!
Hk+p+1−i (x).

(B.7)

To prove this we note from (B.1) that

Hp(x)Hk+1(x) =
p∑

i=0

2i p!

i!(p − i)!

(k + p + 1 − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

=
p∑

i=0

2i p!

i!(p − i)!
{k + p + 1 − i} (k + p − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x), (B.8)

whilst

H′
p(x)Hk(x) = 2pHp−1(x)Hk(x)

= 2p

p−1∑
i=0

2i (p − 1)!

i!(p − 1 − i)!

(k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)
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=
p−1∑
i=0

2i+1 p!

i!(p − 1 − i)!

(k + p − 1 − i)!

(k + p − 1 − 2i)!
Hk+p−1−2i (x)

=
p∑

i=1

2i p!

(i − 1)!(p − i)!

(k + p − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x)

=
p∑

i=0

2i p!

i!(p − i)!
{i} (k + p − i)!

(k + p + 1 − 2i)!
Hk+p+1−2i (x), (B.9)

where in the fourth step we shifted i → i−1, and in the final step we were again able to extend
the limit of summation. Adding (B.8) and (B.9) together then gives the required identity (B.7).

Note Added in Proof. After this paper was submitted, our attention was drawn to two papers on related topics. Robnik
[9] has considered the factorization solutions of the partner potentials of the harmonic oscillator generated by the
harmonic oscillator wavefunctions, φH

k (x), rather than φH
k (ix). These obviously have the non-physical feature of

(x − x0)
−2 singularities at the nodes of the wavefunction φH

k (x). Ioffe and Nishnianidze [10] developed a general
method to construct almost isospectral potentials using SUSY intertwining relations of third order in derivatives. The
CPRS potential is one of a class of potentials soluble by their methods.
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